2018-06-01 11:12:00

sodium carbonate(soda ash)-Production

Production

Mining

Tronatrisodium hydrogendicarbonate dihydrate (Na3HCO3CO3·2H2O), is mined in several areas of the US and provides nearly all the domestic consumption of sodium carbonate. Large natural deposits found in 1938, such as the one near Green River, Wyoming, have made mining more economical than industrial production in North America. There are important reserves of trona in Turkey; two million tons of soda ash have been extracted from the reserves near Ankara. It is also mined from some alkaline lakes such as Lake Magadi in Kenya by dredging. Hot saline springs continuously replenish salt in the lake so that, provided the rate of dredging is no greater than the replenishment rate, the source is fully sustainable.

Barilla and kelp

Several "halophyte" (salt-tolerant) plant species and seaweed species can be processed to yield an impure form of sodium carbonate, and these sources predominated in Europe and elsewhere until the early 19th century. The land plants (typically glassworts or saltworts) or the seaweed (typically Fucus species) were harvested, dried, and burned. The ashes were then "lixiviated" (washed with water) to form an alkali solution. This solution was boiled dry to create the final product, which was termed "soda ash"; this very old name refers to the archetypal plant source for soda ash, which was the small annual shrub Salsola soda ("barilla plant").

The sodium carbonate concentration in soda ash varied very widely, from 2–3 percent for the seaweed-derived form ("kelp"), to 30 percent for the best barilla produced from saltwort plants in Spain. Plant and seaweed sources for soda ash, and also for the related alkali "potash", became increasingly inadequate by the end of the 18th century, and the search for commercially viable routes to synthesizing soda ash from salt and other chemicals intensified.

Leblanc process

Main article: Leblanc process

In 1791, the French chemist Nicolas Leblanc patented a process for producing sodium carbonate from salt, sulfuric acidlimestone, and coal. First, sea salt (sodium chloride) was boiled in sulfuric acid to yield sodium sulfate and hydrogen chloride gas, according to the chemical equation

Next, the sodium sulfate was blended with crushed limestone (calcium carbonate) and coal, and the mixture was burnt, producing calcium sulfide.

The sodium carbonate was extracted from the ashes with water, and then collected by allowing the water to evaporate.

The hydrochloric acid produced by the Leblanc process was a major source of air pollution, and the calcium sulfide byproduct also presented waste disposal issues. However, it remained the major production method for sodium carbonate until the late 1880s.

Solvay process

Main article: Solvay process

In 1861, the Belgian industrial chemist Ernest Solvay developed a method to convert sodium chloride to sodium carbonate using ammonia. The Solvay process centered around a large hollow tower. At the bottom, calcium carbonate (limestone) was heated to release carbon dioxide:

At the top, a concentrated solution of sodium chloride and ammonia entered the tower. As the carbon dioxide bubbled up through it, sodium bicarbonate precipitated:

The sodium bicarbonate was then converted to sodium carbonate by heating it, releasing water and carbon dioxide:

Meanwhile, the ammonia was regenerated from the ammonium chloride byproduct by treating it with the lime (calcium hydroxide) left over from carbon dioxide generation:

Because the Solvay process recycles its ammonia, it consumes only brine and limestone, and has calcium chloride as its only waste product. This made it substantially more economical than the Leblanc process, and it soon came to dominate world sodium carbonate production. By 1900, 90% of sodium carbonate was produced by the Solvay process, and the last Leblanc process plant closed in the early 1920s.The Solvay process results in soda ash (predominantly sodium carbonate (Na2CO3)) from brine (as a source of sodium chloride (NaCl)) and from limestone (as a source of calcium carbonate (CaCO3)). The overall process is:

2 NaCl + CaCO3 → Na2CO3 + CaCl2

The actual implementation of this global, overall reaction is intricate. A simplified description can be given using the four different, interacting chemical reactions illustrated in the figure. In the first step in the process, carbon dioxide (CO2) passes through a concentrated aqueous solution of sodium chloride (table salt, NaCl) and ammonia (NH3).

NaCl + CO2 + NH3 + H2O → NaHCO3 + NH4Cl (I)

In industrial practice, the reaction is carried out by passing concentrated brine through two towers. In the first, ammonia bubbles up through the brine (salt water) and is absorbed by it. In the second, carbon dioxide bubbles up through the ammoniated brine, and sodium bicarbonate (baking soda) precipitates out of the solution. Note that, in a basic solution, NaHCO3 is less water-soluble than sodium chloride. The ammonia (NH3) buffers the solution at a basic pH; without the ammonia, a hydrochloric acid byproduct would render the solution acidic, and arrest the precipitation.

The necessary ammonia "catalyst" for reaction (I) is reclaimed in a later step, and relatively little ammonia is consumed. The carbon dioxide required for reaction (I) is produced by heating ("calcination") of the limestone at 950 - 1100 °C. The calcium carbonate (CaCO3) in the limestone is partially converted to quicklime (calcium oxide (CaO)) and carbon dioxide:

CaCO3 → CO2 + CaO (II)

The sodium bicarbonate (NaHCO3) that precipitates out in reaction (I) is filtered out from the hot ammonium chloride (NH4Cl) solution, and the solution is then reacted with the quicklime (calcium oxide (CaO)) left over from heating the limestone in step (II).

2 NH4Cl + CaO → 2 NH3 + CaCl2 + H2O (III)

CaO makes a strong basic solution. The ammonia from reaction (III) is recycled back to the initial brine solution of reaction (I).

The sodium bicarbonate (NaHCO3) precipitate from reaction (I) is then converted to the final product, sodium carbonate (washing soda: Na2CO3), by calcination (160 - 230 C), producing water and carbon dioxide as byproducts:

2 NaHCO3 → Na2CO3 + H2O + CO2 (IV)

The carbon dioxide from step (IV) is recovered for re-use in step (I). When properly designed and operated, a Solvay plant can reclaim almost all its ammonia, and consumes only small amounts of additional ammonia to make up for losses. The only major inputs to the Solvay process are salt, limestone and thermal energy, and its only major byproduct is calcium chloride, which is sold as road salt.

Hou's process

This process was developed by Chinese chemist Hou Debang in the 1930s. The earlier steam reforming byproduct carbon dioxide was pumped through a saturated solution of sodium chloride and ammonia to produce sodium bicarbonate by these reactions:

The sodium bicarbonate was collected as a precipitate due to its low solubility and then heated to yield pure sodium carbonate similar to last step of the Solvay process. More sodium chloride is added to the remaining solution of ammonium and sodium chlorides; also, more ammonia is pumped at 30-40 °C to this solution. The solution temperature is then lowered to below 10 °C. Solubility of ammonium chloride is higher than that of sodium chloride at 30 °C and lower at 10 °C. Due to this temperature-dependent solubility difference and the common-ion effect, ammonium chloride is precipitated in a sodium chloride solution.

The Chinese name of Hou's process, lianhe zhijian fa (联合制碱法), means "coupled manufacturing alkali method": Hou's process is coupled to the Haber process and offers better atom economy by eliminating the production of calcium chloride, since ammonia no longer needs to be regenerated. The byproduct ammonium chloride can be sold as a fertilizer.